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Abstract—The two-phase flow model of 1-dim. propagation of thermal detonation is reformulated to permit
isolation of both new and existing conclusions which are independent of fragmentation kinetics data. The
two-phase flow model is found to be necessary for making quantitive predictions of detonation strength in
hydrodynamic fragmentation. A wide spectrum of kinetics-independent permissible Chapman-Jouguet
states is found possible for any specific intitial condition in calculations for the UQ,-sodium system, with
sensitivity of these (C-J) states found to initial sodium (coolant) vapor blanket volume fraction. Arguments
are presented which suggest our use of an equilibrium sonic velocity for C-J wave termination. The abrupt
decrease of sonic velocity due to the presence of vapor or gas is found to be sufficiently severe as to render
vaporization unlikely either in the steady detonation zone or at the C-J plane, and further identifies a lower
threshold for thermodynamically permissible C-J propagations which occurs at coolant saturation.

NOMENCLATURE

sonic velocity ;

frozen sonic velocity of ‘fluid’, equation (30);
equilibrium sonic velocity of ‘fluid’ com-
posite, equations (19.6) and (20.7);

volume fraction of fragmented fuel in ‘fluid’;
local fraction of original fuel which has
fragmented;

volumetric drag force by ‘fluid’ on unfrag-
mented fuel droplets (— Z direction);
specific enthalpy;

total mass flux, equation (6.1);

pressure ;

= dP./dT, slope of vapor pressure curve for
coolant;

specific entropy;

temperature [generic in equations (18) and
(19)] “fluid’ value T = T; in equations (19.2),
(19.6) and (30);

velocity (mass average when unscripted);
shock velocity, equation (10.3);

mass fraction of fragmented fuel in ‘fluid’
(x4g), €quation (2);

mass fraction of coolant as vapor;

distance downstream from shock front.

Greek symbols

local volume fraction of unfragmented fuel
(oq);

coefficient of thermal expansion; f,, equa-
tion (19.5);

*Work performed under the auspices of the U.S. Depart-
ment of Energy.
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w, local mass fraction of unfragmented fuel
(wq);

o, mass density, equation (1) (total when
unsubscripted);

£, local volume fraction of coolant as vapor,
equation (3);

g, = w™! — 1, preceding equation (9.1);

Iy, mass rate of fragmentation, equations (10.1)
and (10.4);

¢, volumetric heat transfer rate from droplets
to fluid, equation (12.1);

D, equation (22.2);

K, equation (19.7);

K, equation (20.5).

Subscripts

d, fuel droplets (except in drag coefficient);

f, ‘fluid’ composite (fuel fragments and
coolant);

dB, debris (fuel fragments);

C, coolant (liquid, vapor or both);

1, liquid coolant ;

v, vapor coolant;

vl, vapor value minus liquid value;

T, relative (velocity);

s, saturation (vapor-liquid equilibrium);

1, upstream side of shock front;

0, downstream side of shock front.

L. INTRODUCTION

IN A RECENT article [1], Sharon and Bankoff have
presented an extensive summary of their work on
modelling of 1-dim. shock wave propagation through
a coarse mixture of hot liquid (fuel) droplets sur-
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rounded by a colder but vaporizable liquid (coolant).
In their detonation propagation concept, a shock wave
might become self-sustaining as a result of mechanical
energy release during the fragmentation and associated
rapid heat transfer from fuel to coolant just behind the
shock front, much like a chemical detonation is
sustained by the release of energy in chemical re-
action behind a shock front.

A major portion of the intuitive basis for this
‘thermal detonation’ concept of propagation and its
analogy to chemical detonation was pioneered by
Board et al. [2]. Although it is difficult to overvalue
the physical basis which these authors have contri-
buted to modelling the phenomena, their published
intuitive approach suffers from extensive dependence
upon analogy to Chapman-Jouguet (C-J) theory for
combustion detonation involving only one chemical
reaction. In this respect, the approach can lead to
quantitatively erroneous conclusions. To explain this
briefly, we submit that in prescribing the simplest, well
defined quantitative model for the 1-dim. thermal
detonation it appears necessary to invoke analogy to
chemical detonation involving a minimum of two
independent reactions, for in the relaxation zone just
behind the shock there are at least two independent
kinetic rate processes occurring. There are [1] frag-
mentation of fuel droplets with heat exchange from
fragments to coolant, and [ 2], velocity equilibration of
unfragmented fuel droplets and coolant by interphase
drag forces. Progress of these two rate processes is
interdependent for most physical mechanisms ad-
vanced, e.g. both sets of kinetics are dependent
upon relative phase velocity in the hydrodynamic frag-
mentation models [1].

The significance of this distinction can be antici-
pated on comparing one- and two-reaction chemical
detonation in a single phase medium. For the one
reaction case classical Chapman-Jouguet wave analy-
sis (including, if desired, its graphical solution tech-
nique based upon tangency of the Rayleigh line, repre-
senting progress viewed on a pressure-volume phase
plane, to the equilibrium Rankine-Hugoniot curve)
can characterize the strength of the propagation. Thus,
conservation conditions, together with a sonic con-
dition, enable jump balances and thermodynamics to
uniquely fix conditions at the Chapman-Jouguet
plane without use of kinetics. In contrast, for the two-
reaction (or multiple reaction) case, the conservation
conditions with a sonic condition are insufficient to
characterize a unique propagation or its strength.
Thus, regardless of what choice of sonic or choking
condition is used, there will exist an entire spectrum
of conceivable C-J  detonation-termination
points which satisfy the conservation and sonic con-
ditions. Selecting the uniquely correct C—J point from
this spectrum requires at least a ‘phase plane’ in-
tegration of the relative reaction kinetics which serve to
resolve the competition among the reactions. Evi-
dently a Chapman-Jouguet estimate of propagation
strength for a two or multiple-reaction system, based

upon a one reaction approximation, will be quanti-
tatively inappropriate when the spectrum of ad-
missible C-J points (based upon a similar sonic
condition and jump balance conservation conditions)
is a wide range of possible propagation strengths for
the kinetics to select among. In calculations here, we
present strong evidence that such is indeed the case for
the analagous thermal detonation.

As additional support for the necessity of an explict
multiple reaction analogy for hydrodynamic fragmen-
tation, note that in the original developments [ 2] of the
one-reaction analogy, calculations of the detonation
magnitudes are based upon homogeneous flow, and
do not employ explicit accounting of the relative
velocities between fuel and coolant in the detonation
zone even though the intuitive fragmentation physics
centers on the role of this relative velocity. An explicit
accounting of the relative velocity implies use of two-
phase (or multiphase) flow kinematics. Thus, multi-
phase flow models are synonymous with the multiple
reaction analogy, and appear essential to quantitative
predictions of detonation strengths.

For these reasons we regard the formulations of
multiphase flow models by Sharon and Bankoff [1]
and by Scott and Berthoud [3] to be of major signific-
ance to quantitative predictions of thermal detonation
strengths. The purpose of the present paper is to offer
the complementary views, additional insights, con-
clusions, and emphasis afforded by a modified for-
mulation of these developments. Since [1] is especially
detailed, we emphasize comparison to it. These
authors employ an effective two-phase flow simplifi-
cation which defines the two-phase flow kinematics at
any point of the detonation zone in terms of a first
phase consisting of unfragmented fuel (droplets) hav-
ing one phase velocity and thermal state, and a
second ‘fluid phase’ which is a composite of finely
fragmented fuel debris and coolant. The coolant is
itself allowed to be a two-phase vapor-liquid mixture,
while the fuel debris is considered thermally and
mechanically equilibrated with coolant so that the
‘fluid phase’ has a single-phase velocity and thermal
state, i.e. is in separated, homogeneous flow. This
model obviously assumes the time scales for thermal
and velocity equilibration of fragmented fuel and
coolant to be much shorter than those for fragmen-
tation or similar equilibration of unfragmented fuel
droplets and coolant. The model allows the simplest of
well defined multiphase flow treatments; hence we
confine present discussions to it, and refrain from
altering the above assumptions.

We attempt here toisolate that information which in
this model can be obtained from a Chapman-Jouguet
wave analysis for the effective two-reaction system
without detailed knowledge of constitutive relations
for the kinetics of fragmentation and fuel-coolant
equilibration, i.e. can be obtained from jump balance
conservation conditions, thermodynamic relations
and sonic termination. An advantage of separating this
information is that it is applicable as a framework for
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discussion independent of uncertainties concerning
interpretation of kinetics data, and of purely kinetic
parameters such as initial fuel-droplet size.

As a matter of emphasis, note that from the view-
point of the two phase model, a quasi-equilibrium
condition applies, similar to a “first level simplest
approach” (cf. [1], para. 3 of Introduction), but
without assuming complete fragmentation or equili-
bration of unfragmented fuel and coolant. Thus, for
hydrodynamic fragmentation, a zero relative velocity
between fuel drops and coolant by itself implies zero
fragmentation rate at the C-J sonic plane. The degree
of fragmentation, and hence all other conditions at the
C-J plane, are in this case no longer uniquely de-
termined by upstream conditions plus a ‘tangency’ or
sonic conditon, and now are dependent upon fragmen-
tation kinetics. However, a spectrum, i.e. one para-
meter family, of potential C-J conditions is defined for
each prescription of upstream conditions, cf. Fig. 1. In
particular, pressures previously predicted and alluded
to, ([1] par. 3 of Introduction) based upon complete
fragmentation, are not unique even as “order of
magnitude estimates” and appear unjustifiably selec-
ted as extremes among many possibilities. We see that
from the viewpoint of the two-phase, two-reaction
model, the assumption of complete hydrodynamic
fragmentation at the C-J plane is itself arbitrary and
much less appropriate than that of velocity equili-
brium there. Therefore, realistic prediction of deton-
ation strengths here require simultaneous prediction
of incomplete fragmentation extents based upon frag-
mentation kinetics. (It is also desirable to separate this
“phase-plane” prediction from that of rate-dependent
detonation zone lengths.)

In this paper, we introduce the modifications which
allow us to adapt the effective two-phase model
presented in [1] to a form which permits the separ-
ation of information mentioned two paragraphs
above. Calculations are reported for the kinetics-
independent part, and the equations necessary for use
of kinetics relations are recast into forms which entail
integration of only one or two differential equations.
Results of integrating these kinetics-dependent equa-
tions are deferred to a subsequent paper.

2. MODEL FORMULATION

For simplicity, brevity and continuity we adhere to
notational conventions of [1], and emphasize the
changes, additions and simplifications used here. Sub-
scripts 1, 0, 3 will refer to: 1, the upstream state; O, just
behind the shock; and 3, at the sonic plane.

2.1. Kinematical definitions

If o, slw=wy, | — 0 =w, a=ay, | —a =o5) de-
notes local mass and volume fraction of unfragmented
fuel, these are related by pow = pya, p(l — w) =
pi{l — o) so that total mixture density assumes the

general working relations
o -\
p=paa+pll —a)={—+ - 1)
Pa Pr

If x, D{x = x4) denote local mass and volume frac-
tions of fragmented fuel in the equilibrated fluid phase,
their relationship is p;x = pggD, pe(l — x) = p (1 — D)
and the fluid density is intrinsically

X (1—x)\"1!
=pagD+p1-D)={—+ v
Pr=PaB Pl ) (de o > )

Similarly if the coolant is comprised of both vapor and
liquid, and ¢, y(¢ = ¢,) denote local volume and mass
fraction of coolant in the vapor phase, p.y = p.z,
p(l — y) = p(1 — ¢),and the intrinsic coolant density
is

y o b=y\-t
=00+ pi(1 —8)=(—+*‘7> - (3)
p 'D pl pv pl /

The local specific value of a composite property such
as enthalpy, i, is then

i=iw+i(l — w), 4)
with intrinsic specific enthalpies for fluid and coolant:
ip = Xigg+(1 — x)i; |

i, = yi,+(1 =y, (5)

The total (1-dim.) mass flux j is defined by
J = pu = pouy + p(1 — o, (6.1)

with the average velocity u, and relative velocity u,:
6.2)

u=wuyg+{1 —wue; u,=uy—ug.

These in turn determine the velocities u,, u, of com-
posite fluid (coolant plus fragmented fuel debris) and
unfragmented fuel droplets,

uy=u—ou,; ug=u+(l-—owu,. (6.3)

Since 1 — E represents fraction of original fuel which
has not been fragmented, E may be defined in steady
flow by

pouy = w, j(1 — E),
or using (6.1) and (6.3),

(7.1)

po(l -, =jlw, —w—Ewv,), (72)

wherein constancy of j has been used. Under these
conditions the total flux of fuel (droplets and fragmen-
ted debris) is

pwug + xp(l — 0y = 0, j. (7.3)

When combined with (7.1) and separately with (6.1)
and (6.3) this yields respectively

Pl — )y = w, jE/x, (8.1)

(8.2)

Comparing (8.2) with (7.2) establishes relations be-
tween E and x, and hence the complete forms

¢ =wrt—1):
E D
X = = s
E+{, D+(1-D)p./pas

po(l —ou =j(w; —w—x+xw)/(1 —x).

©.1)
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; E
D= AN .92
x+(1=x)pgpip.  E+{ipan/pe
E:é’_\'_zr @L (9.3)
I—x "'p. 1-D’ '

Relations (9) together with velocity relations (7)—(8)
express all kinematic variables in terms of an inde-
pendent conversion variable such as E, and a de-
pendent variable (chosen as either w or «), plus
thermodynamic intensive properties and quantities.
These relations are consistent with [1], and though
redundant are found most useful in the developments.

2.2. Equations of change and conservation

With the exception of differences to be noted, we
start with equations for separated, two-phase, steady
flow in one dimension, equivalent to those employed
by Sharon and Bankoff [1]. Thus, the mass balances
on fuel and coolant are respectively,

El)w“d = — (Fp(l — g
d
= ——a:p(l—w)xu,= - Iy, (10.1)
d
a:p(l —w)(! = x)u; =0. (10.2)

The first equality (10.1) is equivalent to total mass
conservation (dj/dz = 0), or

J = pu = constant = p,u, (10.3)

where u, is shock velocity relative to motionless
conditions upstream of shock (we assume zero relative
motion between fuel and coolant there). Combining
the first and third terms of (10.1) and relating to
upstream values also provides equation (7.3). Equa-
tion (7.1)in (10.1) then yields the first reduced kinetics
form:
dE
o j— =T}

4 (10.4)

The individual equivalent-phase equations of momen-
tum change are stated as

Uy dpP
— = —gq——F 11.1
pwuy 1 adz ( )
du, dpP
pl —oug—— = — (1—a)— + F + u,I,.
dz dz

(11.2)
These combine to the total momentum conservation
form:
d[P+pwul + p(1 —w)i]/dz =0,

which upon use of the upstream value P, + j*/p,.
equations (6.3) and (10.3), provides the momentum
jump condition:

CONDIFF

1 1
P —P=j (7 - -—) + pa(l —wi. (11.3)
VY

This form, generalizes the ‘Rayleigh line’ relationship
between pressure and local specific volume, v = 1/p. It
shows that non-zero relative velocity between fuel
drops and coolant eliminates the classical straight-line
character of progress through the detonation zone, as
represented on a P—v phase plane. Of course u, may be
eliminated from (11.3) using (7.2).

The energy equation for the fuel droplet phase
takes the form

© o diy  dP

a8 )

-9 (12.1)

dz dz

with ¢ the volumetric heat transfer rate from droplets
to fluid. In adopting this equation form we have
assumed that all viscous dissipation of mechanical
energy occurs in the coolant fluid phase, with only a
negligible amount occurring in the unfragmented fuel
droplets. An equivalent form,

7

d |
pwud;(id—kiuﬁ): —uF— ¢, (122)

is seen to differ in the velocity factor F(u, vs u,) from
that used in [1]. The corresponding fluid equation is

(1) di; dP
M Pr dz dz

= ¢+ uF+Gg—i+uZ/2)T. (123)

We shall employ the combination of these equations
which states total energy conservation, viz.

o)
— | pwugyl|ig + zu
dz pwug|ly 2 d/
+ p(1l — ol i + iuf =0. (13.1)
This may be written, using (6.3), (6.1), (10.3), and the
upstream condition u,, = 0, as
2j[,ig— wig+ (1 —w,)in— (1 — w)i]
2=pi?)
+ 3j (1 —w)u? + pw(l —w) (1 —2whd.

+ 2po(l —oulic—ig) = p "
(13.2)

We now replace u, by j using (7.2) and i; by i, and iy
using (5) and (9.1), to obtain the energy jump balance
(in=1iq)

(I —w){ig—i) + w,[Elig—ism)

+ (1 —E)(ig—i4)]
Jtl/t !
=2{Q2_f>+

(1-2w)(w, — Ew, —w)?

prZ(l _w)Z

™

3w, — Ew, — )

A general Rankine—-Hugoniot relation for arbitrary E
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may be identified by eliminating j* from (13.3) using
(11.3) and (7.2).

Generally, in addition to (13.3), it is necessary to
trace thermodynamic properties of unfragmented fuel
with the kinetic equation (12.1). However, if we neglect
the small heat transfer (¢ = 0), this equation reduces
to the isentropic droplet condition p,diy — dP = 0,
so that to the extent the droplets are incompres-
sible, (12.1) may be replaced by the insertion of

ig =g = (P — P)/py

into (13.3). With this the requisite kinetic equation
forms for tracing progress through the detonation
zone are simply (10.4) and (11.1) for E and w, with
(13.3) and (11.3) determining thermodynamic con-
ditions locally.

If one may treat the actual thickness of the shock
zone as very thin, there will be very little momentum
exchange between fuel droplets and coolant during the
period of shock passage and collapse of vapor blan-
kets. Under this condition the individual phase
momentum-jump conditions (cf. also equation (66)
of [1]) may be expressed as total momentum con-
servation (p,u, = j, =J) plus

(14)

a Py — Py = wsz(l/powo = 1/p )

2:2
- <“’“ >(1/a0 —1x,). (15.1)

Pd

The final form here applies if we may treat fuel droplets
as incompressible. {We have used (7.1) here with
E = 0.] The shock compression ratio Py/P, follows
from (15.1) and total momentum jump [(11.3) with
E =0in (7.2)].

The elimination of j* between that result and (15.1),
may then be rearranged to the general working form,

P P
<1 _ ——1>wf<l - Mﬂ) - (ao —a, —1>n (15.2)
P, Par%y Py
with
n={(wo—)*/(1—w4) + (W~ PaoPo/Pars)-
(15.3)

Equation (15.2) is useful for fixing conditions just
behind the shock front. In a similar manner, a second
working relation obtains with E = 0 by eliminating j>
between (13.3) and (11.3). The result is
iy — iep = ﬁ(‘{’ —ay)
p1(l—wy)

(15.4)
with definitions

Y=(1—a?+(1 = 204)d/(w, — @,) + 38)/a(l —a+9),
a=po/py = Aot /%Wy,

d=(w; —wu) /w1 —wy). (15.5)

To obtain (15.4), the simplification of (14), ie. ¢ =0
and incompressible fuel, has been adopted.

We now develop important equations for the vari-
ations of fuel volume fraction, «, and pressure P
which are required for kinetics integrations as well as
in sonic termination considerations. Differentiation of
the momentum conservation condition (11.3} even-
tually yields

do dpP dp
2 .or o 8h 2904
(psu pdud)dz dz Qg dz
d
+(1 —a)ufﬁ’ﬁ Yl (161)
z

A less symmetrical relation which follows from (11.1)
is:
da dP ,dp,

pdudz(—j;= o——uj— + F—u I

16.2
dz dz ( )

Application of either requires an explicit decoupled
expression for pressure gradient. A general starting
form for obtaining this has been provided by Sharon
and Bankoff [1], viz.

o (I —a)\dP
7+ z )a,
Paltq Peli dz  py dz

1 1 1 1 u,
— F s——— |~ Tl —————5 ) (17)
Palla  Prls Prle  Pallg  Prlis

{An elegant derivation of (17) is presented in [1] by
combining the individual phase momentum balances
(our 11.1, 11.2), cf. their equation (47).} It may also be
obtained by combination of (16.1) and (16.2). Further
decoupling now awaits relations for fluid and droplet
density variations. The fuel droplet density change in
(17) follows generally from the thermodynamic
identity

* dpg (1= @) dpx

pe  dz

dp/p = dP/pC? — (B/C,)Tds

with use of the energy equation (12.1). Here C, §, C,
are respectively the (single-phase) sonic velocity,
coefficient of thermal expansion, and constant press-
ure heat capacity; and, of course, in (12.1) use

Tds =di —dPjp = deT — TBdP/p. (19)

The fluid density variations needed in (16) and (17)
are more complicated since equations of type (18)
apply to pure phase components. Our composite
fluid—thermodynamic results for this are not strict
agreement with equation (49) of [1], and, in addition,
show very significant differences between cases of (i)
subcooled or supercritical (single phase) coolant, and
(il) coolant in equilibrium flashing, i.e. lower sonic
(choke) velocities in case (ii). Consequently we sketch
some derivation detail. Our starting point may be
obtained from equations (2) and (9):

d 1 1 d d

e pf<— _ ~—>dx + D 4 (1)

Pr Pc Pas Pas Pe
(19.1)

(18)

The pure phase density variations, dpys dp.. are
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eliminated in case (i) using equations of type (18) and
the latter part of (19). The result contains a tempera-
ture variation, d7T, which is in turn eliminated by
applying an equation similar to (5) for entropy, and
again eliminating pure component entropy variations
with (19). We ultimately obtain

CpdT = Tds; — (igg—i.)dx + TBdP/p;, (19.2)
d dP
dor_ AP P opgg 4 wax, (19.3)
pr pC? C Pr
with
Cpr = x Cpygyy + (1 —x)Cp, (19.4)
B = DByy + (1-D)B.. (19.5)
1D (1-D)
Pt’sz PanCin /’ccf

DB 1-D)p? 2
”[ B, (1-DIF_ f } 196
PanCran pCop, PrCrs

K= {P (L - **) ﬁ(lclb c)]‘
\Pe Pap Cpr |

Equation (19.6) defines an equilibrium ‘sonic’ velocity
of the composite fluid which incorporates corrections
to the ‘homogeneous flow sonic velocity’ for coolant
and debris due to relative thermal expansion of these
components at constant entropy s; and debris mass
fraction, x. These corrections shall be included in
subsequent calculations. They are, however, generally
less significant than the corresponding corrections for
case (ii).

In case (i), or equilibrium coolant flashing, the
coolant density variation in (19.1)is decomposed using
(3), so that (19.1) becomes

(19.7)

dp; 1
ﬂzp (7,7>d +ded8
Py P Pan Pds
(1-D)
+ ——=(p,de + edp, + (1 —e)dpp.  (20.1)
Pe

A similar decomposition of coolant and fluid entropy
using equations similar to (5) yields a relation for de,

—D)p.p, Sv.[d 1_1)(dp %)} —ds
- f
pv pl

PP
(1=x)(yds,+(1—y)ds),
(20.2)

s )dx —xdsyp—

—(Sq5—

which replaces (19.2). If the coolant vapor and liquid
are approximately in equilibrium, the fluid tempera-
ture variations follow the coolant vapor pressure
curve, dT = dP/P.(T). Thus, the entropies, and den-
sities of fuel debris, coolant liquid, and coolant vapor,
all obey the generic thermodynamic relations,

C
pds = (’;P*j - ﬂ)dP (20.3)
do (1 TE B
= (pCZ e F)dP (20.4)

We eliminate de from (20.1) using (20.2), insert the
above density and entropy variations for each of the
pure phases, apply the Clausius Clapeyron equation
form, p,p;5,, = — py P, and the equilibrium condition
iqg — ic = T(sgg — ). This produces the replacement
of (19.3) applicable to flashing conditions,

dp; dP
— = —*ds + K, dx. 20.5
pe oGP ' ( )
Here,
1 1 )
K,=p|——— )+ (igg — i)/ TP, (20.6)
Pe  Pap
1 f (1 —2¢)
= = +(1-D ( + ¢
p:C? pasClp ) ».C2? 0,C? >
DE2 2 gAY
+T[ Bis +(1—D)( s +(1 f)ﬂx)
ParCrap PvC,w 0:Cpy
iin PrCrr
- 20.7
TP, + (TP)? ( )

with (19.4) and (19.5) applicable here also provided
one uses
Cp.=yC,, +(1

—9Ch; B.=eB,+(1—2)B;

(20.8)

Equation (20.7) defines an effective sonic velocity C;
for the composite fluid under flashing conditions. The
correction terms to the ‘homogeneous flow sonic
velocity’ arise both from thermal expansion and from
vaporization expansion. Because these terms involving
P, can dominate the entire expression, drastic re-
ductions (discontinuities) occur in C; when the coolant
vapor-liquid phase boundary is approached from the
sub-cooled liquid side, thereby effectively suppressing
C-J propagations.

The requisite density variations required in (17) and
(16) are now obtained from either (19.3) for single-
phase coolant, or (20.5) for equilibrium flashing of
coolant. In the first case, (i), we apply the fluid energy
equation (12.3) with (19), along with (9.1) and (10.4) to
obtain

di_ 1 4P 1=

dz C}d: ull—o) " L)
b [& +uF +(iy—ic+u}/2)0].
Crritg(1 —a)
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Similarly from (12.1)

de_ 1 dpP Ba

dz _C_ﬁa Cpaligt

. (21.2)

From these the pressure gradient of equation (17)
assumes the general form of Sharon and Bankoff [1],
[their equation (52)], viz.

dp
O — = KeF+K I+ K 0=K,

1
e (22.1)

and here with

cb—i(l L+(1_°‘)<1 1) 222)
Cpa\ui G2 pe ¢ C)TT

)= Ba _ Be . (22.3)
PaCratis  PrCerlis
1 1 Bu
Kp=—0w - —————-T1 | (22.4)
F piuf Pd“g PeCopglts
1 u 1 K(l —x
PR PRI B ()
Palla  PelYs Prlig Pilg
b (ig—ic+u?/2). (22.5)

PeCorliy

We shall not state the corresponding results for
flashing [case (ii)] but simply note that equations
(22.1) and (22.2) hold as general forms, but (20.7) re-
places (19.6) as definition of C; in that case. {The defi-
nition (19.6) also distinguishes our (22.2) from @
of [1] equation (52). Differences in our K¢ and Ky stem
from our adopted forms for the energy equation,
(12.1),(12.3).} Equation (22.1), plus the result of substi-
tuting it into (21.1), may be applied to (16.2) to obtain

d
pdu§£=GFF+Grl"f+G¢¢EG (23.1)
with M = u/c denoting Mach number in
Gy=oll = MK J® — Byuy/Coar (23.2)
Ge = a(l —MDK/® + 1 (23.3)
Gy = a(l —MHK /O — u,. (23.4)

Equation (23.1) provides a reduced kinetic equation
for direct integration utilizing the conservation con-
ditions and (10.4). Numerical results based upon such
integrations will be presented in a subsequent paper.
An equation for the fluid temperature also follows
from (19.2), which ultimately becomes

dT
pfafquPfa; =1eF + 7l + 140

(24.1)
with

1 = oqu, TBUK, /D) + iy — igp + u/2, (24.2)

Tp = o T B(Ke/ D) + u, (24.3)

T, = ottt TH(K ,/®) + 1. (24.4)

Though redundant, in numerical procedures this equa-
tion may be used as a replacement for the total energy
balance (13.3), which then serves as an accuracy or
consistency check.

2.3. Equations for conditions at Chapman-Jouguet
plane

We shall adhere, here, to the principle that in
hydrodynamic fragmentation, termination of the
quasi-steady detonation zone corresponds to a quasi-
equilibrium condition that relative velocity ap-

proaches zero, hence from (7.2)
u, =0orw=w,(1—-E) (25)

Under this circumstance ;2 is eliminated between the
energy and momentum-jump balances (11.3), (13.3). If
we also apply the relationship obtained from (9.1), (1),
and (2) along with (25), viz.

p =0, (1= EYpy+0,Elpay+(1—,)/p. (26)

we obtain

le[z(id_idB) + (P—Pl)(L - i)}
Pap  Pa

=2, (ig—ig) + 1=y (i, —iy)]

1 —
- (P—P1)<—+ @) w‘> 27.1)
‘pl pd pc

This explicit solution for E amounts to a general
Rankine—Hugoniot relationship among thermody-
namic variables (for fuel droplets plus fluid) and E. If
we neglect the small heat transfer rate (¢ =0) and take
nearly incompressible fuel droplets (p, = p,) equation
(14) reduces (27.1) to the simpler form,

1 1
E[z(idl_idB) + (P_P1)<—~ + _>:|
Pan P4

=—-{ [2(ic1 —i)+ (P - P1)<L + pi>:| (27.2)
< cl

This Rankine—Hugoniot relation relates E to pressure
P and temperature T of the fluid only, or in the case of
equilibrium flashing, to P = P, (T) and vapor fraction
e((, =w{ ' —1). There remain two degrees of freedom,
only one of which may be removed by a sonic
termination condition.

In view of the variety of possible sonic velocities
which can be defined for the multiphase system, it is
possible to rationalize more than one detonation-—
termination condition. However, Sharon and
Bankoff [1] have argued that Chapman-Jouguet
termination should occur at a singularity in the kinetic
equations, ie. ® = 0in (22.1), (23.1) or (24.1). Al-
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though rigorous stability arguments remain to be
advanced. other conditions such as tangency to a
constant E Rankine~Hugoniot appear less justified.
Introducing (25} into (22.2), or equivalently u, = u,
=y = j/pin the choke conditions @ = 0, we obtain the

(1-2)
+ =3
oGy )

P =P ('i N 9:952) (;3_‘

(28)

in which we have inserted the momentum-jump con-
dition (11.3). To apply this we, of course, may use (26)
along with relations for . {1 — ), and p, obtained from
using (25) in {9), and (2), <f. also {(19.6). For complete-
ness, we supply also the tangency condition for the
constant E Rankine-Hugoniot curve in reduced ex-
plicit form:

(6 =0

| Be 11 1 )
Hl— o) | s b T e 29
o (f}f’cfl * 2C,; [Pr P |, )

(P ”’,’r_)ﬁz)
2pCy

with 1/5¢; = x/pg + (1 =X)/p.,. Equation (29} is de-
rived using (27.2) and (26), may be compared with (28)
for incompressible fuel droplets, ie. for 1/Cy = 0.

3. KINETICS INDEPENDENT CALCULATIONS FOR THE
U0,-SODIUM SYSTEM

3.1. Chapman-Jouguet plane evaluation

In this section, we utilize the primary equations
(27.2) and (28) to calculate conditions at a variety of
hypothetical Chapman-Jouguet planes. The variety is
due to the observed fact that for each unique com-
pletely stated upstream (initial} condition, the C-J
plane conditions are determined in the absence of
kinetics integrations, to within one unspecified degree
of freedom. Such a parameter may be chosen to be
fractional fragmentation E or shock velocity j/p. Thus,
any two C-J plane variables (e.g. P and T) may be
plotted as a single-curve locus of permissible C-J
points. Such a locus is altered by any changes in
specifications of upstream initial conditions. Our
calculations show that the primary sensitivity is to
changes in volume fraction of coolant vapor in the
vapor blankets surrounding fuel droplets upstream of
shock, i.e. £,. Hence our resuits are assembled as a set
of C-J point curves with ¢, as parameter, keeping all
other upstream conditions constant.

A procedure for performing such computations of
the following form has been employed. A pressure is
fixed To define a point for this P, coolant
temperature is determined by iteration on (28). For
each temperature tried during iteration E is de-
termined by (27.2), from which all other kinematical,

thermodynamic, and conserved quantities are evalu-
ated using above formulac. We use the approxi-
mation of incompressible fuel droplets. Sodium-
coolant properties are based upon the correlations of
Breton [4]. Since these do not apply above the critical
temperature, calculations are aborted when coolant
temperatures reach 2700 K. Figure 1 shows a se-
quence of C-J point curves thus obtained for the
following upstream initial conditions: liquid coolant
temperature T, = 600K. {A chosen coolant vapor
blanket temperature of 1200K is unimportant), fuel
droplet temperature T, = 3500K, fuel to coolant
mass ratio of 9.671 {w, = 0.9063), P, = 0.1 MPa.

Figure 1(a) represents the C-J point curve sequence
onaP—uv(r=1/p.)diagram for sodium, showing also
the liquid side saturation curve. For ¢, above a small
lower limit, the C-J curves all initiate at the saturation
curve. This important fact originates in the discon-
tinuous jump of sonic velocity C; for the composite
fluid from its subcooled liquid value (19.6) to the
flashing value {20.7). The latter value is found to be so
much lower that no solution to the C~J equations [(28)
and {27.2)] is possible. This suggests that a pro-
pagation cannot exist with flashing occurring in the
steady zone or at the C-J point. It also suggests that
the coolant saturation curve defines a lower limit
threshold boundary for C-J curves. If, with a specific
upstream condition and ¢,, fragmentation kinetics is
not able to sustain C-J conditions for sub-
cooled liquid above this saturation curve threshold,
steady propagation appears improbable, and triggered
propagation is likely to fizzle. Since the threshold C-J
point can be calculated without recourse to fragmen-
tation kinetics information, we shall term it a thermo-
dynamic threshold.

Additional characteristics of the points on the C-J
curves in Fig. 1{a) are shown in Figs. I{b—~d} showing
coolant temperature, pressure, and fractional fragmen-
tation E vs propagation velocity. A striking obser-
vation is the wide range of possible C-J conditions
which are admitted, with complete fragmentation
(E = 1) an implausible, hypothetical extreme. Similar
charts (not shown) and observations are found for
other upstream initial conditions. Thus if the mass
ratio is reduced to 4.00 (w,; = 0.8), the primary differ-
ences appear as larger values of E. This difference is due
mainly to the fact that there was proportionally less fuel
available to be fragmented. The actual amounts of fuel
fragmented are more comparable. Similarly, by raising
the initial pressure, a significant alteration is an
observed elevation of lower C-J thresholds, which
places more stringet demands upon kinetic fragmen-
tation rates for sustaining minimum level propagation.
A physical explanation for this requires further
investigation.

3.2, Determination of shock-jump state conditions
Treating the shock-jump as sufficiently sharp, we

consider now the individual phase momentum con-

servation requirement (15.2). This additional relation
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permits determination of a state condition just behind
the shock for any hypothetical C—J point calculated
via Section 3.1. The following calculational procedure
has been employed and automated successfully. A
coolant temperature (T, = T,,) s fixed (initially only
a few degrees above the upstream value T¢,). Con-
ditions corresponding to this temperature are found by
double iteration. In an inner iteration step, Py is
presumed so that thermodynamic properties of cool-
ant including iy, = i, p.o are identifiable. Then
equation (15.2), with p,, = py;, Is iterated to cor-
responding values of a,, or equivalently ,. This
provides basis for calculating equation (15.4). The
outer iteration consists of systematic repeating for new
selections of P, until (15.4}is satisfied. Either j or shock
velocity at this point, as well as u,q, tyq, Ugo, then follow
from (15.1) or (11.3), with equation (7-9). This process
is then repeated for new points at higher values of T .

A one-to-one correspondence between shock jump
point conditions and C—J point conditions is made by
comparing j or shock velocity. Thus, T, (and cor-
responding P,) values which yield shock velocities
below the thermodynamic C-J threshold (Section 3.1)
are ruled out. Similarly, upper limits on C-J curves
define upper limits on T, P,. From these calculations
for the UO,—sodium system, the following is observed
on charts (not shown). Coolant temperatures rise
only slightly through the shock front, and are well
below their values at the corresponding C-J plane, in
agreement with [ 1]. Pressures, Py, may jump to values
either above or below those at the C-J plane. Velo-
cities of fuel droplets tend to drop only by 10%, or less
of shock propagation velocity, while velocities of
coolant typically drop ~ 509 of propagation velocity.
These values, of course, are due principally to the high
density of UO, (p, = 8.4g/cc) relative to that of
sodium.

4. CONCLUDING REMARKS

The above calculations have identified a saturation
curve threshold for potential Chapman—Jouguet
points, below which no such propagation solution is
possible. The basis for this conclusion is the size of the
large precipitous drop of effective sonic velocity C;, of
the coolant—debris fluid when coolant itself becomes a
vapor—liquid mixture. While this observation is based
upon an equilibrium-flashing model, the sharp re-
ductions of effective sonic velocities due to the presence
of vapor is well known [5]. Thus, the assumption of
equilibrium should not be of consequence to threshold
existence. However, a non-equilibrium formation of
vapor in subcooled liquid would effectively raise the
threshold above the saturation curve, and therefore,
under special circumstances, have the effect of suppress-
ing thermal detonation propagation. We consider
vapor formation highly unlikely in the steady zone of
the C-J propagation wave.

In contrast to this, coolant vaporization is quite
probable in the unsteady expansion wave beyond

HMT 25:1 - G

(behind) the Chapman-Jouguet plane. This has most
interesting stability implications The ‘protection’ of
the C-J plane from disturbances in this zone may be
facilitated considerably by the much lower sonic velo-
cities prevalent in the rarefaction wave due to
vaporization.

Finally, we note that the use of local equilibrium
between fragmented fuel debris and coolant has a
stringent test in its prediction of the equilibrium sonic
velocity C; [equation (19.6)]. We anticipate that the
introduction of a three-phase model in which heat
transfer and velocity equilibration of fragmented
debris occurs on a slower time scale, so as to be neither
instantaneous nor synonymous with fragmentation,
will give rise to the use of the alternative ‘frozen’ sonic
velocity C;, which is identical to that of Sharon and
Bankoff [1]. For comparison, equation (19.6) may be
written

1 ( 1 1 >_ DBy
oeT C? sz PaeCran

LU-DBE B
chpc prPf

= ( Ban
PasCran

ﬁc >2 /’( 1 + 1 )
chPc "j D:DdBCPdB (1 - D)/)CCPC

/

(30)

the first form defining C;. The second form de-
monstrates that the general C; < C;, so that the
equilibrium condition limits the Chapman-Jouguet
propagation velocities in comparison to the frozen
condition. The significance of this may be greater than
that of finite debris-equilibrium kinetics.
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ETUDE DE LA PROPAGATION QUASI-STATIONNAIRE DE DETONATIONS THERMIQUES
A TRAVERS DES DISPERSIONS DE COMBUSTIBLE CHAUD LIQUIDE DANS DES
LIQUIDES PLUS FROIDS ET VOLATILES

Reésumé—La modéle d’écoulement diphasique pour la propagation undirectionnelle d’une détonation
thermique est reformulé pour permettre la formulation de deux conclusions nouvelles qui sont indépendan-
tes des données cinétiques de fragmentation. Un large spectre d'états possibles de Chapman-Jouguet est
trouvé pour toute condition initiale spécifique dans les calculs pour le systéme UQ,-sodium, avec la
sensibilité de ces états C-J. On présente des arguments qui sugérent ['utilisation d’une vitesse sonique
d'équilibre pour la terminaison d’'onde C-J. La diminution abrupte de la vitesse sonique due a la présence de
vapeur ou de gaz est trouvée étre suffisamment forte pour rendre la vaporisation soit dans la zone de
détonation permanente ou dans le plan C-J et on identifie une limite inférieure pour les propagations C-J
thermodynamiquement possibles qui se produisent a la saturation du réfrigérant.

BEITRAG ZUR QUASI-STATIONAREN AUSBREITUNG THERMISCHER DETONATIONEN
IN DISPERSIONEN VON HEISSEM, FLUSSIGEM BRENNSTOFF IN KUHLEREN,
FLUCHTIGEN UND FLUSSIGEN KUHLMITTELN

Zusammenfassung—Das Zweiphasen-Stromungsmodell fiir eindimensionale Ausbreitung thermischer
Detonationen wird so umformuliert, daB sowohl neue als auch bekannte von fragmentationskinetischen
Daten unabhingige Folgerungen getrennt betrachtet werden konnen. Es zeigt sich, dafl das Zweiphasen-
Stromungsmodell notwendig ist, um quantitative Voraussagen iiber die Detonationsstirke bei hydrodyna-
mischer Fragmentation machen zu kSnnen. Bei den Berechnungen fiir das System UQ,-Natrium stellt sich
heraus, daf} fiir jede spezifische Anfangsbedingung ein breiter Bereich kinetikunabhingiger erlaubter
Chapman-Jouguet (CJ)-Zustinde moglich ist. Diese ermittelten CJ-Zustinde sind vom anfinglichen
Volumenverhaltnis von Natrium (K ihlmittel) zu Dampffilm abhéingig. Es werden Argumente genannt, die
die von uns benutzte Gleichgewichts-Schallgeschwindigkeit zur Bergrenzung der CJ-Wellen begriinden. Die
plotzliche Abnahme der Schallgeschwindigkeit aufgrund der Anwesenheit von Dampf oder Gas erweist sich
als so einschneidend, daf} die Verdampfung sowohl in der stationiiren Detonationszone als auch in der CI-
Ebene unwahrscheinlich wird. Ferner kennzeichnet sie einen unteren Schwellenwert fiir thermodynamisch
zuldssige CJ-Ausbreitungen, die bei Sdttigung des Kiihimittels auftreten.

K BOMPOCY O KBASMUCTALUMOHAPHOM PACTIPOCTPAHEHUH TEMJOBOW
AETOHAUHWHU B CYCINEH3UAX FOPAYEIO XHUIKOIO TOMIUBA, HAXOAAUMUXCS
B BOJIEE XONOIHBIX JETYUHUX XUIAKHUX TENJOHOCHUTEAX

AnHotammst — [IpencTaBiiena HoBas GOPMY.THPOBKA MOCIH ABYX(BAIHOTO TEHEHHS NPH OAHOMEPHOM
PaclpOCTPAHEHHH TEPMHMHECKOR 1eTOHALUMH, NO3BOIAIOILAS CAENATh HOBBIE H NOATBEPAMTH CYLUECTBY-
TOLUME BBIBOABI O mpolecce, He Npuberas X [1aHHBIM 10 KMHETHKE /HCTieprapoBauns. [TokataHo. 4To
QIS KOJIMHECTBEHHBIX OLEHOK MHTEHCHBHOCTH JETOHANMHM NPH I'MAPOIHHAMMHHMECKOM JIpOGIeHHH He-
0GX0OMMO HCTIOAL30BAHNE MOJENH ABYX(M3HOTO TeueHHs. B pacuerax s cucrems UO, - natpuil
YCTAHOBJCHA BO3MOKHOCTb CYLIECTBOBAHUS LIHPOKOIO CMIEKTPA KHHETHHYECKH HE3ABMCHMBIX JONYCTH-
Mpix cocTonnui Uenmena-XKrore (C-J) 213 moBoroe KOHKPETHOrO HAYATLHOTO VCIIOBHS. 4 TAaKKE
onpeneeHo pausuue Ha 37TH (C-J) coctosnns nauanbHoM o6beMHON 101 NAPOB HATPHA (TENIOHOCH-
tens). Buickazanbl coOOpakenHs. NOATBEPNIAIONINE BOIMOKHOCTL MCHOTLIOBAHHS PUBHOBECHOI
3BYKOBOH CKOPOCTH Ans 061acTH 3aTyxanus Boiuel C J. [TOK434HO, 1TO CHIDKEHUE CKOPOCTH 3BYKA
B NMPUCYTCTBHH Napa MM ra3a NPOHCXOAHT HACTOMBKO PEIKO, MTO [IPOLECC HCHAPEHHS BECHMA MAl0-
BEPOATEH KaK B 30HE CTALMOHAPHOM NETOHAUMH, Tak U B nnockocTH € J. KpoMe Toro. 710 cHUXeHue
NO3BOJIACT ONPEXEIHTL GOJIEE HU3KOE IHAUEHHE NIPENIETBHOTO (TOPOrd TEPMO;IMHAMHUYECKH JONYCTAMbIX
cocTosiHuit C-J, 9TO HMEET MECTO NIPH HACHILIEHHH TelIOHOCHTEIIS.



