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Abstract-The two-phase flow model of l-dim. propagation of thermal detonation is reformulated to permit 
isolation of both new and existing conclusions which are independent of fragmentation kinetics data. The 
two-phase flow model is found to be necessary for making quantitive predictions of detonation strength in 
hydrodynamic fragmentation. A wide spectrum of kinetics-independent permissible Chapman-Jouguet 
states is found possible for any specific intitial condition in calculations for the UO,-sodium system, with 
sensitivity of these (C-J) states found to initial sodium (coolant) vapor blanket volume fraction. Arguments 
are presented which suggest our use of an equilibrium sonic velocity for C-J wave termination. The abrupt 
decrease of sonic velocity due to the presence of vapor or gas is found to be sufficiently severe as to render 
vaporization unlikely either in the steady detonation zone or at the C-J plane, and further identifies a lower 

threshold for thermodynamically permissible C-J propagations which occurs at coolant saturation. 

NOMENCLATURE 

sonic velocity ; 
frozen sonic velocity of ‘fluid’, equation (30); 
equilibrium sonic velocity of ‘fluid’ com- 

posite, equations (19.6) and (20.7); 
volume fraction of fragmented fuel in ‘fluid’; 
local fraction of original fuel which has 
fragmented ; 
volumetric drag force by ‘fluid’ on unfrag- 
mented fuel droplets (- Z direction); 
specific enthalpy ; 
total mass flux, equation (6.1); 
pressure ; 
= dP,/dT, slope of vapor pressure curve for 
coolant ; 
specific entropy ; 
temperature [generic in equations (18) and 
(19)] ‘fluid’ value T = Tf in equations (19.2), 

(19.6) and (30); 
velocity (mass average when unscripted); 
shock velocity, equation (10.3); 
mass fraction of fragmented fuel in ‘fluid 
(x,&, equation (2); 
mass fraction of coolant as vapor ; 
distance downstream from shock front. 

Greek symbols 

a, local volume fraction of unfragmented fuel 

tad); 

8, coefficient of thermal expansion; /3,, equa- 
tion (19.5); 

*Work performed under the auspices of the U.S. Depart- 
ment of Energy. 
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local mass fraction of unfragmented fuel 

bd); 

mass density, equation (1) (total when 
unsubscripted); 
local volume fraction of coolant as vapor, 
equation (3) ; 
= 0-1 - 1, preceding equation (9.1); 
mass rate of fragmentation, equations (10.1) 
and (10.4); 
volumetric heat transfer rate from droplets 

to fluid, equation (12.1); 
equation (22.2); 
equation (19.7); 

equation (20.5). 

Subscripts 

4 
f, 

dB. 

c, 
1, 
v, 
vl, 
r, 
s, 
1, 
0, 

fuel droplets (except in drag coefficient); 
‘fluid’ composite (fuel fragments and 
coolant) ; 
debris (fuel fragments); 

coolant (liquid, vapor or both); 
liquid coolant ; 
vapor coolant ; 
vapor value minus liquid value; 
relative (velocity); 
saturation (vapor-liquid equilibrium); 
upstream side of shock front ; 
downstream side of shock front. 

I. INTRODUCTION 

IN A RECENT article [l], Sharon and Bankoff have 
presented an extensive summary of their work on 
modelling of l-dim. shock wave propagation through 
a coarse mixture of hot liquid (fuel) droplets sur- 
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rounded by a colder but vaporizable liquid (coolant). 
In their detonation propagation concept, a shock wave 
might become self-sustaining as a result of mechanical 
energy release during the fragmentation and associated 
rapid heat transfer from fuel to coolant just behind the 

shock front, much like a chemical detonation is 
sustained by the release of energy in chemical re- 
action behind a shock front. 

A major portion of the intuitive basis for this 
‘thermal detonation’ concept of propagation and its 

analogy to chemical detonation was pioneered by 
Board et al. [2]. Although it is difficult to overvalue 

the physical basis which these authors have contri- 
buted to modelling the phenomena, their published 
intuitive approach suffers from extensive dependence 
upon analogy to Chapman-Jouguet (CJ) theory for 
combustion detonation involving only one chemical 

reaction. In this respect, the approach can lead to 
quantitatively erroneous conclusions. To explain this 
briefly, we submit that in prescribing the simplest, well 
defined quantitative model for the l-dim. thermal 

detonation it appears necessary to invoke analogy to 
chemical detonation involving a minimum of two 
independent reactions, for in the relaxation zone just 
behind the shock there are at least two independent 
kinetic rate processes occurring. There are [l] frag- 
mentation of fuel droplets with heat exchange from 
fragments to coolant, and [2], velocity equilibration of 

unfragmented fuel droplets and coolant by interphase 
drag forces. Progress of these two rate processes is 
interdependent for most physical mechanisms ad- 
vanced, e.g. both sets of kinetics are dependent 

upon relative phase velocity in the hydrodynamic frag- 
mentation models [ 11. 

The significance of this distinction can be antici- 
pated on comparing one- and two-reaction chemical 
detonation in a single phase medium. For the one 
reaction case classical Chapman-Jouguet wave analy- 
sis (including, if desired, its graphical solution tech- 
nique based upon tangency of the Rayleigh line, repre- 
senting progress viewed on a pressure-volume phase 
plane, to the equilibrium Rankine-Hugoniot curve) 
can characterize the strength of the propagation. Thus, 
conservation conditions, together with a sonic con- 
dition, enable jump balances and thermodynamics to 
uniquely fix conditions at the ChapmanJouguet 

plane without use of kinetics. In contrast, for the two- 
reaction (or multiple reaction) case, the conservation 
conditions with a sonic condition are insufficient to 
characterize a unique propagation or its strength. 
Thus, regardless of what choice of sonic or choking 
condition is used, there will exist an entire spectrum 

of conceivable CJ detonation-termination 

points which satisfy the conservation and sonic con- 
ditions. Selecting the uniquely correct CJ point from 
this spectrum requires at least a ‘phase plane’ in- 
tegration of the relative reaction kinetics which serve to 
resolve the competition among the reactions. Evi- 
dently a ChapmanJouguet estimate of propagation 
strength for a two or multiple-reaction system, based 

upon a one reaction approximation, will be quanti- 
tatively inappropriate when the spectrum of ad- 

missible C-J points (based upon a similar sonic 
condition and jump balance conservation conditions) 
is a wide range of possible propagation strengths for 
the kinetics to select among. In calculations here, we 
present strong evidence that such is indeed the case for 
the analagous thermal detonation. 

As additional support for the necessity of an explict 
multiple reaction analogy for hydrodynamic fragmen- 

tation, note that in the original developments [2] of the 
one-reaction analogy, calculations of the detonation 
magnitudes are based upon homogeneous flow, and 
do not employ explicit accounting of the relative 
velocities between fuel and coolant in the detonation 
zone even though the intuitive fragmentation physics 

centers on the role of this relative velocity. An explicit 
accounting of the relative velocity implies use of two- 
phase (or multiphase) flow kinematics. Thus, multi- 

phase flow models are synonymous with the multiple 
reaction analogy, and appear essential to quantitative 
predictions of detonation strengths. 

For these reasons we regard the formulations of 

multiphase flow models by Sharon and Bankoff [l] 

and by Scott and Berthoud [3] to be of major signific- 
ance to quantitative predictions of thermal detonation 
strengths. The purpose of the present paper is to offer 
the complementary views, additional insights, con- 
clusions, and emphasis afforded by a modified for- 
mulation of these developments. Since [ 1] is especially 
detailed, we emphasize comparison to it. These 
authors employ an effective two-phase flow simplifi- 
cation which defines the two-phase flow kinematics at 
any point of the detonation zone in terms of a first 
phase consisting of unfragmented fuel (droplets) hav- 
ing one phase velocity and thermal state, and a 
second ‘fluid phase’ which is a composite of finely 
fragmented fuel debris and coolant. The coolant is 
itself allowed to be a two-phase vaporrliquid mixture, 
while the fuel debris is considered thermally and 

mechanically equilibrated with coolant so that the 
‘fluid phase’ has a single-phase velocity and thermal 
state, i.e. is in separated, homogeneous flow. This 
model obviously assumes the time scales for thermal 
and velocity equilibration of fragmented fuel and 
coolant to be much shorter than those for fragmen- 
tation or similar equilibration of unfragmented fuel 
droplets and coolant. The model allows the simplest of 

well defined multiphase flow treatments; hence we 
confine present discussions to it, and refrain from 
altering the above assumptions. 

We attempt here to isolate that information which in 
this model can be obtained from a Chapman-Jouguet 
wave analysis for the effective two-reaction system 
without detailed knowledge of constitutive relations 
for the kinetics of fragmentation and fuelLcoolant 
equilibration, i.e. can be obtained from jump balance 

conservation conditions, thermodynamic relations 
and sonic termination. An advantage of separating this 
information is that it is applicable as a framework for 
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discussion independent of uncertainties concerning 

interpretation of kinetics data, and of purely kinetic 
parameters such as initial fuel-droplet size. 

As a matter of emphasis, note that from the view- 

point of the two phase model, a quasi-equilibrium 
condition applies, similar to a “first level simplest 

approach” (cf. [l], para. 3 of Introduction), but 
without assuming complete fragmentation or equih- 
bration of unfragmented fuel and coolant. Thus, for 
hydrodynamic fragmentation, a zero relative velocity 
between fuel drops and coolant by itself implies zero 
fragmentation rate at the C-J sonic plane. The degree 
of fragmentation, and hence all other conditions at the 
C-J plane, are in this case no longer uniquely de- 
termined by upstream conditions plus a ‘tangency’ or 
sonic conditon, and now are dependent upon fragmen- 
tation kinetics. However, a spectrum, i.e. one para- 
meter family, of potential CJ conditions is defined for 
each prescription of upstream conditions, cf. Fig. 1. In 
particular, pressures previously predicted and alluded 
to, ([l] par. 3 of Introduction) based upon complete 
fragmentation, are not unique even as “order of 

magnitude estimates” and appear unjustifiably selec- 
ted as extremes among many possibilities. We see that 
from the viewpoint of the two-phase, two-reaction 

model, the assumption of complete hydrodynamic 

fragmentation at the C-J plane is itself arbitrary and 
much less appropriate than that of velocity equili- 
brium there. Therefore, realistic prediction of deton- 

ation strengths here require simultaneous prediction 
of incomplete fragmentation extents based upon frag- 
mentation kinetics. (It is also desirable to separate this 
“phase-plane” prediction from that of rate-dependent 
detonation zone lengths.) 

In this paper, we introduce the modifications which 

allow us to adapt the effective two-phase model 
presented in [l] to a form which permits the separ- 
ation of information mentioned two paragraphs 

above. Calculations are reported for the kinetics- 
independent part, and the equations necessary for use 
of kinetics relations are recast into forms which entail 

integration of only one or two differential equations. 
Results of integrating these kinetics-dependent equa- 

tions are deferred to a subsequent paper. 

2. MODEL FORMULATION 

For simplicity, brevity and continuity we adhere to 

notational conventions of [l], and emphasize the 
changes, additions and simplifications used here. Sub- 

scripts 1, 0, 3 will refer to: 1, the upstream state; 0, just 
behind the shock ; and 3, at the sonic plane. 

2.1. Kinematical &finitions 
Ifw,cc(w=w,,l-w=w,,a=a,,l-a=a,)de- 

notes local mass and volume fraction of unfragmented 
fuel, these are related by pw = pda, ~(1 - w) = 
p&l - a) so that total mixture density assumes the 
general working relations 

i 
l-o -i 

p=pda+pf(l -a)= ?+p n n ) (1) 

If x, D(x = xdB) denote local mass and volume frac- 

tions of fragmented fuel in the equilibrated fluid phase, 

their relationship is prx = pdeD, pr( 1 - x) = p,( 1 - D) 
and the fluid density is intrinsically 

Pr=pdBD+pc(l-D)= -’ . (2) 

Similarly if the coolant is comprised of both vapor and 

liquid, and I:, y(c = cV) denote local volume and mass 
fraction of coolant in the vapor phase, p,y = p,,‘:, 
p,( 1 - y) = p,( 1 - 2:) and the intrinsic coolant density 
is 

pE=pYI:+p,(l -~:)=[;+~~-’ (3) 

The local specific value of a composite property such 
as enthalpy, i, is then 

i=i,o+i,(l -CO), (4) 

with intrinsic specific enthalpies for fluid and coolant: 

i, = xi,,+(l - x)i, 

i, = y&+(1 - y)i,. (5) 

The total (l-dim.) mass flux j is defined by 

j=pu=pwu,+p(l-w)u, (6.1) 

with the average velocity u, and relative velocity u,: 

u=wu,+(l-w)u,; u,=ud-ur. (6.2) 

These in turn determine the velocities ur, ud of com- 
posite fluid (coolant plus fragmented fuel debris) and 

unfragmented fuel droplets, 

ur=u-0X$; u,=u+(l-o)u,. (6.3) 

Since 1 - E represents fraction of original fuel which 
has not been fragmented, E may be defined in steady 
flow by 

pou, = w1 j(1 - E), (7.1) 

or using (6.1) and (6.3), 

po(1 -o)u,=j(w, -o-_&0,), (7.2) 

wherein constancy of j has been used. Under these 
conditions the total flux of fuel (droplets and fragmen- 
ted debris) is 

pm, + xp(1 - w)ur = w, j. (7.3) 

When combined with (7.1) and separately with (6.1) 
and (6.3) this yields respectively 

p(1 - w)uf = w1 jE/x, (8.1) 

pw(l-o)u,=j(o,-w-x+xw)/(l-x). (8.2) 

Comparing (8.2) with (7.2) establishes relations be- 
tween E and x, and hence the complete forms 
(ii = w;’ - 1): 

E D 

x=P=D+(l-D)pC/p,,’ E+i, 
Pi / 

(9.1) 
\t’d 
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.Y 
D=---- 

E 

x+(1 -.X)P,,/P, E+i,~,,lp, ’ 
(9.2) 

(9.3) 

Relations (9) together with velocity relations (7))(S) 
express all kinematic variables in terms of an inde- 
pendent conversion variable such as E, and a de- 
pendent variable (chosen as either w or c(), plus 
thermodynamic intensive properties and quantities. 
These relations are consistent with [I], and though 
redundant are found most useful in the developments. 

2.2. Eyuutions of changr and consercution 

With the exception of differences to be noted, we 
start with equations for separated, two-phase, steady 
flow in one dimension. equivalent to those employed 
by Sharon and Bankoff [I]. Thus, the mass balances 
on fuel and coolant are respectively, 

d d 

d?‘fOt’d = 
- d_ ,I( 1 - w)q 

_ 
d 

IZ -d~~(l-Q).Ur= -l-r, (10.1) 

dp(l - w)(l - x)ur = 0. 
d-_ 

(10.2) 

The first equality (10.1) is equivalent to total mass 
conservation (dj/dz = 0), or 

j = pu = constant = P,U, (10.3) 

where u, is shock velocity relative to motionless 
conditions upstream of shock (we assume zero relative 
motion between fuel and coolant there). Combining 
the first and third terms of (10.1) and relating to 

upstream values also provides equation (7.3). Equa- 
tion (7.1) in (10.1) then yields the first reduced kinetics 

form : 

dE 
o,,j- = Tr 

dz 
(10.4) 

The individual equivalent-phase equations of momen- 
tum change are stated as 

(11.1) 

jd-&,z= -(I-a)g+F+uJ,. 

(11.2) 

These combine to the total momentum conservation 
form : 

d[P+pou; + ~(1 -w)u;]/dz = 0, 

which upon use of the upstream value P, +,j*/p,. 
equations (6.3) and (10.3). provides the momentum 
jump condition : 

1 
p,-p=,j2 __L c 1 + pw(1 -w)u,‘. (11.3) 

P P 1 

This form, generalizes the ‘Rayleigh fine’ relationship 
between pressure and local specific volume, LI = l/p. It 
shows that non-zero relative velocity between fuel 
drops and coolant eliminates the classical straight-line 
character of progress through the detonation zone, as 

represented on a P-L’ phase plane. Of course u, may be 
eliminated from (11.3) using (7.2). 

The energy equation for the fuel droplet phase 

takes the form 

= -4 (12.1) 

with 4 the volumetric heat transfer rate from droplets 
to fluid. In adopting this equation form we have 
assumed that all viscous dissipation of mechanical 
energy occurs in the coolant fluid phase, with only a 
negltgible amount occurring in the unfragmented fuel 
droplets. An equivalent form, 

(12.2) 

is seen to differ in the velocity factor F(u, vs Us) from 
that used in [l]. The corresponding fluid equation is 

dir dP 
(1-a)u,p,- - - 

d; dz 
= g+u,F+(i,-i,+u,!/2)r,. (12.3) 

We shall employ the combination of these equations 
which states total energy conservation, viz. 

1 
+ ~(1 -cil)u, i, + 2uf 

i I = 0. (13.1) 

This may be written, using (6.3) (6.1), (10.3), and the 
upstream condition u,, = 0, as 

?j[wri,, - wi, + (1 - Q 1 )i,, - ( 1 - w)i,] 

+ 2Pw( 1 -w)u,(i, - id) = ,j3(p * - 11; 2, 

+ 3jw(l-(~~)u~+/)w(l-((o)(l-22w)uj. (13.2) 

We now replace u, by j using (7.2) and i, by i, and id, 
using (5) and (9.1) to obtain the energy jump balance 

(it, = i,,) 

(1 -%)(i,r-i,) f wl[E(idl-id8) 

f (1 -E)(&-id)] 

(1-Zw)(w,-E~,-w)~ 

p%?( 1 -w)2 

+ 
3(w, - Ew, -w)* 1, P20(l--w) 

(13.3) 

A general Rankine-Hugoniot relation for arbitrary E 
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may be identified by eliminating j2 from (13.3) using 
(11.3) and (7.2). 

Generally, in addition to (13.3), it is necessary to 

trace thermodynamic properties of unfragmented fuel 
with the kinetic equation (12.1). However, if we neglect 
the small heat transfer (4 = 0), this equation reduces 

to the isentropic droplet condition pddi, - dP = 0, 
so that to the extent the droplets are incompres- 
sible, (12.1) may be replaced by the insertion of 

Id - Id, = (P - P,YPd (14) 

into (13.3). With this the requisite kinetic equation 

forms for tracing progress through the detonation 
zone are simply (10.4) and (11.1) for E and w, with 
(13.3) and (11.3) determining thermodynamic con- 
ditions locally. 

If one may treat the actual thickness of the shock 
zone as very thin, there will be very little momentum 
exchange between fuel droplets and coolant during the 
period of shock passage and collapse of vapor blan- 
kets Under this condition the individual phase 
momentum-jump conditions (cf. also equation (66) 
of [1]) may be expressed as total momentum con- 
servation (pru, = j, = j) plus 

The final form here applies if we may treat fuel droplets 
as incompressible. [We have used (7.1) here with 
E = 0.) The shock compression ratio PO/P, follows 
from (15.1) and total momentum jump [(11.3) with 
E = 0 in (7.2)]. 

The elimination ofj’ between that result and (15.1) 

may then be rearranged to the general working form, 

with 

‘I =(w0-w1)2/(1 -wO) + (wO-~,OaOl~,,~r). 

(15.3) 

Equation (15.2) is useful for fixing conditions just 

behind the shock front. In a similar manner, a second 
working relation obtains with E = 0 by eliminating jz 
between (13.3) and (11.3). The result is 

i,, - i co = “-” (Y - aI) 
1’1(1 -w,) 

(15.4) 

with definitions 

~~(l-a~+(l-2wo)62/(w,-Wo)+36)/a(l-a+6), 

a=~~i~,-~~~,la,~~, 

6=(w, -wo)*/oo(l -wo). (15.5) 

To obtain (15.4) the simplification of (14), i.e. 4 = 0 
and incompressible fuel, has been adopted. 

We now develop important equations for the vari- 
ations of fuel volume fraction, a, and pressure P 
whioh are required for kinetics integrations as well as 

in sonic termination considerations. Differentiation of 
the momentum conservation condition (11.3) even- 
tually yields 

da dP 
(PG+Pd"dz)& = 

dpr 
+ (1 - a)uf x + 2u,Fr. (16.1) 

A less symmetrical relation which follows from ( 11.1) 

is: 

Application of either requires an explicit decoupled 
expression for pressure gradient. A general starting 
form for obtaining this has been provided by Sharon 
and Bankoff [l], viz. 

{An elegant derivation of (17) is presented in [1] by 
combining the individual phase momentum balances 
(our 11.1, 11.2) cf. their equation (47).) It may also be 
obtained by combination of (16.1) and (16.2). Further 

decoupling now awaits relations for fluid and droplet 
density variations. The fuel droplet density change in 
(17) follows generally from the thermodynamic 
identity 

dp!p = dPlpC* - (/3/C,)Tds (18) 

with use of the energy equation (12.1). Here C, /I, C, 
are respectively the (single-phase) sonic velocity, 
coefficient of thermal expansion, and constant press- 
ure heat capacity; and, of course, in (12.1) use 

Tds = di - dP/p = C,dT - TbdP,/p. (19) 

The fluid density variations needed in (16) and (17) 

are more complicated since equations of type (18) 
apply to pure phase components. Our composite 
fluid-thermodynamic results for this are not strict 
agreement with equation (49) of [ 11, and, in addition, 
show very significant differences between cases of (i) 

subcooled or supercritical (single phase) coolant, and 
(ii) coolant in equilibrium flashing, i.e. lower sonic 
(choke) velocities in case (ii). Consequently we sketch 
some derivation detail. Our starting point may be 

obtained from equations (2) and (9) : 

dx+~dPde+(,_$!!!k, 
PdR PC 

(19.1) 

The pure phase density variations, dp,,, dp,, are 
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eliminated in case (i) using equations of type (18) and 
the latter part of (19). The result contains a tempera- 
ture variation, dT, which is in turn eliminated by 
applying an equation similar to (5) for entropy, and 
again eliminating pure component entropy variations 
with (19). We ultimately obtain 

C,dT = Tds, - (i,,- i,)dx + TB,dP/p,, (19.2) 

dp, dP -=____ - Bf Tds, + Kdx, 
Pi Pf c CP, 

(19.3) 

with 

c, = x CPd” + (1 -X)Cp,, (19.4) 

81 = Dljdll + (1 - D)B,, (19.5) 

L NC” +* ___... +(l-DIP,2 B: ~-~ 
PdHCPd” PcCPc 1 PrC,, ’ 

(19.6) 

(19.7) 

Equation (19.6) defines an equilibrium ‘sonic’ velocity 
of the composite fluid which incorporates corrections 

to the ‘homogeneous flow sonic velocity’ for coolant 
and debris due to relative thermal expansion of these 
components at constant entropy sr and debris mass 
fraction, .x. These corrections shall be included in 
subsequent calculations. They are, however, generally 
less significant than the corresponding corrections for 
case (ii). 

In case (ii), or equilibrium coolant flashing, the 
coolant density variation in (19.1) is decomposed using 
(3) so that (19.1) becomes 

41, 1 1 ~= ~_~ PI 
i i 

dx+Ds 
/‘I P, PdH PdB 

+ clpD)li~,,d~: + ‘:dp+ + (1 -i:)dp,). (20.1) 
c 

A similar decomposition of coolant and fluid entropy 
using equations similar to (5) yields a relation for dr:, 

-(sdB-S,)d.Y-.SdSdH-(1-x)(J’ds,+(l--y)ds,), 
(20.2) 

which replaces (19.2). If the coolant vapor and liquid 
are approximately in equilibrium, the fluid tempera- 
ture variations follow the coolant vapor pressure 
curve, dT = dP/P:(T). Thus, the entropies, and den- 
sities of fuel debris, coolant liquid, and coolant vapor, 
all obey the generic thermodynamic relations, 

p ds = (20.3) 

(20.4) 

We eliminate dt: from (20.1) using (20.2), insert the 

above density and entropy variations for each of the 
pure phases, apply the Clausius Clapeyron equation 

form, P,P~~,~ = - p,,,P\, and the equilibrium condition 

IdB - i, = T(s,, - s,). This produces the replacement 
of (19.3) applicable to flashing conditions, 

dp, dp _=- 
Pi 

- m ds, + K,, dx. 
p,c: P: 

(20.5) 

Here, 

K, =Pr i,)/TK (20.6) 

1 D 
---=~+((1- 
PfC Pd&B 

Wf PrCPf 

7-p; + ( Tly2 1 (20.7) 

-D) 

i 

K/3,’ 
(1-D) ~ 

i 

+ (1 -i:,a: 
~ 

P”C,W PlC,, 

with (19.4) and (19.5) applicable here also provided 

one uses 

C,,=yC,,+(l -y)C,,; B,=$,+(l -c)/3,. 
(20.8) 

Equation (20.7) defines an effective sonic velocity c, 
for the composite fluid under flashing conditions. The 
correction terms to the ‘homogeneous flow sonic 
velocity’ arise both from thermal expansion and from 

vaporization expansion. Because these terms involving 
P: can dominate the entire expression, drastic re- 
ductions (discontinuities) occur in c, when the coolant 
vapor-liquid phase boundary is approached from the 
sub-cooled liquid side, thereby effectively suppressing 

C-J propagations. 
The requisite density variations required in (17) and 

(16) are now obtained from either (19.3) for single- 
phase coolant, or (20.5) for equilibrium flashing of 
coolant. In the first case, (i), we apply the fluid energy 
equation (12.3) with (19) along with (9.1) and (10.4) to 
obtain 

dp, 1 dP K(l-X) r 
____+--- 

dz c’: dz u,(l -a) ’ 
(21.1) 

_ c uT;a, [~+u,~+(id-if+U~/2)r,l. 

PI f 
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Similarly from (12.1) 

dp, 1 dP -_=--+ 
dz C; dz 

(21.2) 

From these the pressure gradient of equation (17) 
assumes the general form of Sharon and Bankoff [l], 
[their equation (52)], viz. 

@g = K,F+K,l-,+K,&-K, 

and here with 

(22.1) 

(22.3) 

KFZL_i__ PA 
P fu: P& P&u, * 

(22.4) 

K,=i+&--i+_ K(l -x) 

PdUd Ptu: PA PA 

- &(i,-i,+uf/2). (22.5) 

We shall not state the corresponding results for 
flashing [case (ii)] but simply note that equations 

(22.1) and (22.2) hold as general forms, but (20.7) re- 
places (19.6) as definition of c, in that case. {The defi- 
nition (19.6) also distinguishes our (22.2) from @ 
of [l] equation (52). Differences in our K, and K, stem 

from our adopted forms for the energy equation, 
(12.1), (12.3).) Equation (22.1), plus the result of substi- 
tuting it into (21.1), may be applied to (16.2) to obtain 

pdu;$ = G,F+G,Tf+G&=G (23.1) 

with M = u/c denoting Mach number in 

G, = m(l - M:)Kd@ - @&,,, (23.2) 

G, = cc(1 - M,Z)K,/@ + 1 (23.3) 

G, = x(1 - M;)K# - ud. (23.4) 

Equation (23.1) provides a reduced kinetic equation 
for direct integration utilizing the conservation con- 
ditions and (10.4). Numerical results based upon such 
integrations will be presented in a subsequent paper. 
An equation for the fluid temperature also follows 
from (19.2) which ultimately becomes 

dT 

with 

~rwtC,,~ = t,F + d-f + 7,& 

(24.1) 

zr = ccfutT&(K,/@) + id - id, + uf/2, (24.2) 

7F = W,Tb,(K,/@) + % (24.3) 

74 = cr,u,T&(K,/@) + 1. (24.4) 

Though redundant, in numerical procedures this equa- 

tion may be used as a replacement for the total energy 
balance (13.3) which then serves as an accuracy or 
consistency check. 

2.3. Equations for conditions at Chapman-Jouguet 
plane 

We shall adhere, here, to the principle that in 

hydrodynamic fragmentation, termination of the 
quasi-steady detonation zone corresponds to a quasi- 
equilibrium condition that relative velocity ap- 
proaches zero, hence from (7.2) 

u, = 0 or w = w,(l -E). (25) 

Under this circumstance j* is eliminated between the 
energy and momentum-jump balances (11.3) (13.3). If 
we also apply the relationship obtained from (9.1) (1) 
and (2) along with (25), viz. 

P ~‘=W1(1-E)/p,+w,E/p,,+(1-o,)/p,, (26) 

we obtain 

= 2[w,(i,-id,) + (l-wr)(i,-i,,)] 

-(P-P,) $+z+- 
( 

l-o, 

PC i 
(27.1) 

This explicit solution for E amounts to a general 
Rankine-Hugoniot relationship among thermody- 

namic variables (for fuel droplets plus fluid) and E. If 
we neglect the small heat transfer rate (4 =0) and take 

nearly incompressible fuel droplets (pd = pd,) equation 
(14) reduces (27.1) to the simpler form, 

E[2(&-&) + (P-Pt)[& + k)l 

=- iI 
[ 

2(i,, - i,) + (P - PI) L + L 
( !I 

(27.2) 
P, Pcl 

This RankineeHugoniot relation relates E to pressure 
P and temperature T of the fluid only, or in the case of 
equilibrium flashing, to P = P, (T) and vapor fraction 

E([* =o; l - 1). There remain two degrees of freedom. 
only one of which may be removed by a sonic 

termination condition. 
In view of the variety of possible sonic velocities 

which can be defined for the multiphase system, it is 
possible to rationalize more than one detonation- 

termination condition. However, Sharon and 
Bankoff [l] have argued that ChapmanJouguet 
termination should occur at a singularity in the kinetic 
equations, i.e. @ = Oin (22.1) (23.1) or (24.1). Al- 



94 Dr. AX W CONlxF~ 

though rigorous stability arguments remain to be 
advanced. other conditions such as tangency to a 
constant E Rankine--Hugoniot appear less justified. 

Introducing (25) into (22.2), or equivalently ud = I+ 
= u = ,j//) in the choke conditions CD = 0, we obtain the 
C”..J condition 

in which we have inserted the momentum-jump con- 
dition (11.3). To apply this we, of course, may use (26) 
along with relations for CL (1 -a), and [jr obtained from 
using (25) in (9), and (21, cf. also (19.6). For complete- 
ness, we supply also the tangency condition for the 
constant E Rankine-Hugoniot curve in reduced ex- 
plicit form : 

with f;prr = .Y;Q~~ + (1 -.Y)Q~~,. Equation (29) is de- 
rived using (27.2) and (26), may be compared with (28) 
for jncompressible fuel droplets, i.e. for l/C, 2 0. 

3. liiNETlCS INDEPENDENT CALCULATIONS FOR THE 
UO,-SODIUM SYSTEM 

3.1. Chaptn~il-~o~guet plane ewiuation 
In this section. we utilize the primary equations 

(27.2) and (28) to calculate conditions at a variety of 
hypothetical Chapman-Jouguet planes. The variety is 
due to the observed fact that for each unique com- 
pletely stated upstream (initials condition, the C--J 
plane conditions are determined in the absence of 
kinetics integrations, to within one unspecified degree 
of freedom. Such a parameter may be chosen to be 
fractional fragmentation E or shock velocityjlp. Thus, 
any two C-J plane variables (e.g. P and T) may be 
plotted as a single-curve locus of permissible C-J 
points. Such a locus is altered by any changes in 
specifications of upstream initial conditions. Our 
calculations show that the primary sensitivity is to 
changes in volume fraction of coolant vapor in the 
vapor blankets surrounding fuel droplets upstream of 
shock, i.e. z,. Hence our results are assembled as a set 
of C-J point curves with i:1 as parameter, keeping all 
other upstream conditions constant. 

A procedure for performing such computations of 
the following form has been employed. A pressure is 
fixed. To define a point for this P, coolant 
temperature is determined by iteration on (28). For 
each temperature tried during iteration E is de- 
termined by (27.2), from which all other kinematica1, 

thermodynamic, and conserved quantities are evalu- 
ated using above formulae. We use the approxi- 
mation of incompressible fuel droplets, Sodium- 
coolant properties are based upon the correlations of 
Breton [4]. Since these do not apply above the critical 
temperature, calculations are aborted when coolant 
temperatures reach 2700K. Figure 1 shows a se- 
quence of C-J point curves thus obtained for the 
following upstream initial conditions: liquid coolant 
temperature T,, = 600K. (A chosen coolant vapor 
blanket temperature of 1200K is unimportant), fuel 
droplet temperature T,, = 3500 K, fuel to coolant 
mass ratio of 9.671 (w, = 0.90631, P, = 0.1 MPa. 

Figure l(a) represents the C-J point curve sequence 
on a P - 1’ (I’ = l//j,) diagram for sodium, showing also 
the liquid side saturation curve. For I:, above a small 
lower limit, the C-J curves all initiate at the saturation 
curve. This important fact originates in the discon- 
tinuous jump of sonic velocity ii,. for the composite 
fluid from its subcooled liquid value (19.6) to the 
flashing value (20.7). The latter value is found to be so 
much lower that no solution to theC-J equations [(28) 
and (27.2)] is possible. This suggests that a pro- 
pagation cannot exist with flashing occurring in the 
steady zone or at the C-J point. It also suggests that 
the coolant saturation curve defines a lower limit 
threshold boundary for C-J curves. If, with a specific 
upstream condition and i:$, fragmentation kinetics is 
not able to sustain C-J conditions for sub- 
cooled liquid above this saturation curve threshold, 
steady propagation appears improbable, and triggered 
propagation is likely to fizzle. Since the threshold C-J 
point can be calculated without recourse to fragmen- 
tation kinetics information, we shall term it a thermo- 
dynamic threshold. 

Additional characteristics of the points on the C-J 
curves in Fig. I(a) are shown in Figs. l(b-d) showing 
coolant temperature, pressure, and fractional fragmen- 
tation E vs propagation velocity. A striking obser- 
vation is the wide range of possible C-J conditions 
which are admitted, with complete fragmentation 
(E = 1) an implausible, hypothetical extreme. Similar 
charts (not shown) and observations are found for 
other upstream initial conditions. Thus if the mass 
ratio is reduced to 4.00 (wi = 0.8), the primary differ- 
ences appear as larger values of 3% This difference is due 
mainly to the fact that there was proportionally less fuel 
available to be fragmented. The actual amounts of fuel 
fragmented are more comparable. Similarly, by raising 
the initial pressure, a significant alteration is an 
observed elevation of lower C-J thresholds. which 
places more stringet demands upon kinetic fragmen- 
tation rate* for sustaining minimum level propagation. 
A physical explanation for this requires further 
investigation. 

3.2, Determinutiorz of shock,jump state conditions 
Treating the shock-jump as sufficiently sharp, we 

consider now the individua1 phase momentum con- 
servation requirement (15.2). This additional relation 
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FTC;. i(a). Admissable C-J propagation states on a pressure-volume diagram for sodium for specified 
upstream (initial) states of a coarse mixture of sodium and UO,. Each cuwe corresponds to a labeled value of 
sodium vapor volume fraction cl, and hence to a uniquely specified initial state. Each curve terminates at a 

near critical temperature of 2700 K. The lower curve represents liquid saturation. 

INITIAL CONDITIONS 
P1= 0.10 Mpo 
TLl coolant) = 600. K 
VLl 

i 

coolant) = 1.1519 cc/gm 
I 

TDl fuel) = 3500. K 
Fuel/Caol ant Mass Roti a= 9.671 
epsl as parameter 

0 500 lOO0 2500 3000 

FIG. I(b). C-J conditions of Fig. I(a)--pressure at C-J plane vs propagation velocity-in one-to-one point 
and curve correspondence, with upper termination near 27OOK and lower threshold at sodium saturation for 

c, L 0.14. 
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INITIAL CONDITIONS 
- PI= 0.10 Mpo 

TLI (coolant) = 600. K 
- W-1 

t 
coolant) = 1.1519 cc/gm 

TDI fuel) = 3500. K 
_ Fuel/Coolant Mass Ratio= 9.677 

epsl as parameter 
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0 500 HI00 1500 T??m/s 2500 3000 3x)0 

SHOCK VEl_OC I 

FIG. l(c). C-J conditions of Fig. l(a)-coolant (sodium) temperature vs propagation velocity-in one-to- 
one point and curve correspondence with Figs. l(a, b), with upper termination near 2700 K and lower 

threshold at sodium saturation for I:, 2 0.14. 
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FIG. l(d). C-J conditions of Fig. l(a)-fraction of fuel (UO,) fragmented, E, vs propagation velocity-in 
one-to-one point and curve correspondence with Figs. l(a-C), with upper termination of curves near 

2706K and lower threshold at sodium saturation for t:, :, 0.14. 
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permits determination of a state condition just behind 

the shock for any hypothetical C-J point calculated 
via Section 3.1. The following calculational procedure 
has been employed and automated successfully. A 
coolant temperature (T,, = T,,) is fixed (initially only 
a few degrees above the upstream value T,, ). Con- 
ditions corresponding to this temperature are found by 
double iteration. In an inner iteration step, P, is 
presumed so that thermodynamic properties of cool- 

ant including it, = i,,, 11~~ are identifiable. Then 

equation (15.2) with ~,,e = pdlr is iterated to cor- 

responding values of aO, or equivalently o,,. This 
provides basis for calculating equation (15.4). The 
outer iteration consists ofsystematic repeating for new 
selections of P, until (15.4) is satisfied. Eitherj or shock 
velocity at this point, as well as Q,, udO, ure, then follow 
from (15.1) or (11.3) with equation (7-9). This process 
is then repeated for new points at higher values of T,,. 

A one-to-one correspondence between shock jump 
point conditions and CJ point conditions is made by 
comparing ,j or shock velocity. Thus, T,, (and cor- 
responding PO) values which yield shock velocities 
below the thermodynamic C-J threshold (Section 3.1) 
are ruled out. Similarly, upper limits on CJ curves 
define upper limits on T,,, P,. From these calculations 
for the UO,+odium system, the following is observed 
on charts (not shown). Coolant temperatures rise 

only slightly through the shock front, and are well 
below their values at the corresponding CJ plane, in 

agreement with [I]. Pressures, P,, may jump to values 
either above or below those at the CJ plane. Velo- 
cities of fuel droplets tend to drop only by 10% or less 
of shock propagation velocity, while velocities of 

coolant typically drop - 50”,/, of propagation velocity. 
These values, of course, are due principally to the high 
density of UO, (fjd = 8.4g/cc) relative to that of 
sodium. 

4. CONCLUDISG REMARKS 

The above calculations have identified a saturation 
curve threshold for potential ChapmanJouguet 
points, below which no such propagation solution is 

possible. The basis for this conclusion is the size of the 
large precipitous drop of effective sonic velocity c,, of 
the coolanttdebris fluid when coolant itself becomes a 
vapor-liquid mixture. While this observation is based 
upon an equilibrium-flashing model, the sharp re- 
ductions ofeffective sonic velocities due to the presence 
of vapor is well known [5]. Thus, the assumption of 
equilibrium should not be ofconsequence to threshold 
existence. However, a non-equilibrium formation of 

vapor in subcooled liquid would effectively raise the 
threshold above the saturation curve, and therefore, 
under special circumstances, have the effect of suppress- 

ing thermal detonation propagation. We consider 
vapor formation highly unlikely in the steady zone of 
the CJ propagation wave. 

In contrast to this, coolant vaporization is quite 

probable in the unsteady expansion wave beyond 

HMT 25: 1 - G 

(behind) the Chapman-Jouguet plane. This has most 
interesting stability implications The ‘protection’ of 
the C-J plane from disturbances in this zone may be 
facilitated considerably by the much lower sonic velo- 

cities prevalent in the rarefaction wave due to 
vaporization. 

Finally, we note that the use of local equilibrium 
between fragmented fuel debris and coolant has a 
stringent test in its prediction of the equilibrium sonic 
velocity c, [equation (19.6)]. We anticipate that the 
introduction of a three-phase model in which heat 
transfer and velocity equilibration of fragmented 
debris occurs on a slower time scale, so as to be neither 
instantaneous nor synonymous with fragmentation, 
will give rise to the use of the alternative ‘frozen’ sonic 
velocity C,, which is identical to that of Sharon and 
BankotT [l]. For comparison, equation (19.6) may be 

written 

i 

s dB 1 
G 

Pd&PdB + (1 -DM,,, i 

(30) 

the first form defining Cr. The second form de- 
monstrates that the general c, < C,, so that the 
equilibrium condition limits the ChapmanJouguet 
propagation velocities in comparison to the frozen 
condition. The significance of this may be greater than 

that of finite debris-equilibrium kinetics. 

REFERENCES 

A. Sharon and S. G. BankoK On the existence of steady 
supercritical plane thermal detonations, Int. J. Heit 
Mass Transfer 24, 1561-1572 (1981). Also A. Sharon. 
PhD Thesis, Northwestern University, Evanston, IL; 
June (1979); A. Sharon and S. G. Bankoff, Propagation of 
shock waves in a fuel-coolant mixture, in Topics in Two- 
Phase Heat Transfer and Flow (Edited by S. G. BankoR), 
ASME, N.Y. (1978). 
S. J. Board, R. W. Hall, and R. S. Hall, Nufure, Land. 254, 
319 (1975); R. W. Hall and S. J. Board, In!. J. Hear Mass 
Transfer 22, 1083 (1979). Cf. also S. J. Board and L. 
Caldarola, Fuel-coolant interactions in fast reactors, in 
Thermal and Hydraulic Aspects of Nuclear Reactor 
Safety, Vol. 2 (Edited by 0. C. Jones and S. G. Bankoff), 
ASME, N.Y. (1977). 
E. Scott and G. Berthoud, Multiphase thermal de- 
tonation, in Topics in Two-Phase Heat Transfer and Flow 
(Edited by S. G. Bankoff), ASME, N.Y. (1978). 
J. P. Breton, in Third Specialists’ Meeting on 
Sodium-Fuel Interaction in Fast Reactors, Tokvo. PNC 
N251 76-12, Vol. 1, (March 1976). 
J. A. Boure, The critical flow phenomena with reference 
to two-phase flow and nuclear reactor systems, in 
Thermal and Hydraulic Aspects of Nuclear Reactor 
Safety, Vol. 1 (Edited by 0. C. Jones, Jr. and S. G. 
Bankoff), ASME, N.Y. (1977). 



98 DUANE W. CONDIFF 

ETUDE DE LA PROPAGATION QUASI-STATIONNAIRE DE DETONATIONS THERMIQUES 
A TRAVERS DES DISPERSIONS DE COMBUSTIBLE CHAUD LIOUIDE DANS DES 

LIQUIDES PLUS FROIDS ET VOLATILES _ 

R&urn&La modtle d’tcoulement diphasique pour la propagation undirectionnelle d’une dktonation 
thermique est reformult pour permettre la formulation de deux conclusions nouvelles qui sont inddpendan- 
tes des donnkes cinttiques de fragmentation. Un large spectre d’dtats possibles de Chapman-Jouguet est 
trouvk pour toute condition initiale sp&ifique dans les calculs pour le systtme UO,+odium, avec la 
sensibilitt de ces Ctats C-J. On prCsente des arguments qui sug&ent ~utilisation d’une vitesse sonique 

d’tquilibre pour la terminaison d’onde C-J. La diminution abrupte de la vitesse sonique due d la presence de 
vapeur ou de gaz est trot&e ttre suf~samment forte pour rendre la vaporisation soit dans la zone de 
detonation permanente ou dans le plan C-J et on identifie une limite infbrieure pour les propagations C-J 

thermodynamiquement possibles qui se produisent j la saturation du rtfrigtrant. 

BEITRAG ZUR QUASI-STATIONAREN AUSBREITUNG THERMISCHER DETONATIONEN 
IN DISPERSIONEN VON HEISSEM, FLUSSIGEM BRENNSTOFF IN KUHLEREN, 

FLUCHTIGEN UND FLUSSIGEN KUHLMITTELN 

Zu~m~nfa~ng-Das Zweiphasen-Str~mungsnlodeli fiir eindimensionale Ausbreitung thermischer 
Detonationen wird so umformuliert, dat3 sowohl neue als such bekannte von fragmentationskinetischen 
Daten unabh~ngige Folgerungen getrennt betrachtet werden ktinnen. Es zeigt sich, dal3 das Zweiphasen- 
StrSmungsmodetl notwendig ist, urn quantitative Voraussagen iiber die Detonationsstlrke bei hydrodyna- 
mischer Fragmentation machen zu kiinnen. Bei den Berechnungen fiir das System UO,-Natrium steilt sich 
heraus, daD fiir jede spezifische Anfangsbedingung ein breiter Bereich kinetikunabhxngiger erlaubter 
Chapman-Jouguet (CJ)-Zustsnde mdglich ist. Diese ermittelten CJ-Zustinde sind vom anftinglichen 
Volumenverhlltnis von Natrium (Kiihlmittel) zu Dampffilm abhtingig. Es werden Argumente genannt, die 
die von uns benutzte Gleichgewichts-Schallgeschwindigkeit zur Bergrenzung der CJ-Wellen begriinden. Die 
pliitzliche Abnahme der Schallgeschwindigkeit aufgrund der Anwesenheit von Dampfoder Gas erweist sich 
als so einschneidend, da13 die Verdampfung sowohl in der stationlren Detonationszone als such in der CJ- 
Ebene unwahrscheinlich wird. Ferner kennzeichnet sie einen unteren Schwellenwert fiir thermodynamisch 

zulissige CJ-Ausbreitungen, die bei Slttigung des Kiihtmittels auftreten. 

K BOnPOCY 0 KBA3MCTAL@fOHAPHOM PACTIPOCTPAHEHMM TEllJIOBOli 
flETOHAL@iM B CYCflEH3MRX rOPRrlET0 KKMflKOI-0 TOFUIMBA. HAXOflfl~MXCfl 

B 6OIIEE XOJlOnHbIX AETYqMX mMfiKMX TEFlJIOHOCMTEJIflX 

AHHoTaunR ~-~ npeJlCTaBneHa HOBaR (1)OpMy+lUpOBKa MOile,lH ,lEyX~~l3HOrO Ie’1CHMII IIPM OilHOMepHOM 
pacnpocTpaHeHHa TepMsrecKoA aeTouaumi. n03aon5nomaa cDenaTb Hoable H no!~~aep;l~rb cymec~sy- 
K)l.UHe BblBOnbl 0 IlpOUWCe. He npa6era9 K ;laHHblM 110 KMHeTMKe ;ItlCrlepr&ipOBaIWi% nOKa,aHO. YTO 
flSlR KOnH’,eCTBeHHbIX OUeHOK MHTeHCHBHOClN LleTOHallNH npH I’U,!lpOIIIIHiiMli’leCKOM :IpO6J,eHW He- 

06xonrt~o ~cnonb3oaaH~e Monenti nsyxct,a3Horo re*leHwIT. B pactrerax :~:III cIfc.reMbi UO, t13 I p&iii 
)‘CTaHOBJEHa B03MOX(HOCTb CymecTBOBaH~a IilHpOKOrO CilcKJpa ~~tieT~qe~Ku He~aB~c~MblX .!lOilyCTR- 
Mblx ~~TO~H~~ ~enhfeH~~~~re (C-J) a-la mO6ffI’O KOHRperHOrO Ha’~a~lbHOrO yCl,Oalis. a iaKTe 
onpeneneno anmi5me Ha 3TH (C--J) COCTOBHNR Haranbmh oiisekf,tttoti 2onit riapos rtarp~a (Ieuxxiocu- 
Ten%). BbiCKa3aHbl COO6jla~eHW. ~to~Taep~~a~m~e ~07~0W(HocTb HCllO~Vb?OBaHHI p;tsrioeecrioit 
3ByKOB01i CKOpOCTtz ,WlR OFifliiCTH WTyXaHHR BOnHbI c J. nOKa,aHO wo ctrumeHkfe citopoc~~ 3ayKa 
B npEfCyTCTBMN Flap8 HJIH l-838 IlpOMCXORkfT HaCTOnbKO p’3KO. ‘IT0 IlpOUeCc MCllapeHRH BeCbMa M&70- 
EepOaTeH KaK B 3OHe CTNlMOtl~pHO~ !leTOH~llHII. TaK II a WlOCKOCrM C J. KpoMe 1010. 110 CIIWKeHCle 
Il03aOJlKeT Onpe~e,U,Tb 6Onee HU3KOe 3HkiWHHe lJp‘.%erlbHOrO IlOpOra TepMO;IMHW,HWCKM ~OIIyCI’MMblX 

COCTORH~ C-J. ‘lro mfeeT Memo npkf HaCbluleNHH rellJIOHOcWTeJIH. 


